Comparison of incomplete data handling techniques for neuro-fuzzy system

نویسندگان

  • Marcin Sikora
  • Krzysztof Siminski
چکیده

Real-life data sets sometimes miss some values. The incomplete data needs specialized algorithms or preprocessing that allows the use of the algorithms for complete data. The paper presents a comparison of various techniques for handling incomplete data in the neuro-fuzzy system ANNBFIS. The crucial procedure in the creation of a fuzzy model for the neuro-fuzzy system is the partition of the input domain. The most popular approach (also used in the ANNBFIS) is clustering. The analyzed approaches for clustering incomplete data are: preprocessing (marginalization and imputation) and specialized clustering algorithms (PDS, IFCM, OCS, NPS). The objective of our research is the comparison of the preprocessing techniques and specialized clustering algorithms to find the the most-advantageous technique for handling incomplete data with a neuro-fuzzy system. This approach is also the indirect validation of clustering.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AN OPTIMIZED NEURO-FUZZY GROUP METHOD OF DATA HANDLING SYSTEM BASED ON GRAVITATIONAL SEARCH ALGORITHM FOR EVALUATION OF LATERAL GROUND DISPLACEMENTS

During an earthquake, significant damage can result due to instability of the soil in the area affected by internal seismic waves. A liquefaction-induced lateral ground displacement has been a very damaging type of ground failure during past strong earthquakes. In this study, neuro-fuzzy group method of data handling (NF-GMDH) is utilized for assessment of lateral displacement in both ground sl...

متن کامل

Active Suspension System Control Using Adaptive Neuro Fuzzy (ANFIS) Controller

The purpose of designing the active suspension systems is providing comfort riding and good handling in different road disturbances. In this paper a novel control method based on adaptive neuro fuzzy system in active suspension system is proposed. Choosing the proper data base to train the ANFIS has an important role in increasing the suspension system’s performance. The data base which is used...

متن کامل

Comparison of autoregressive integrated moving average (ARIMA) model and adaptive neuro-fuzzy inference system (ANFIS) model

Proper models for prediction of time series data can be an advantage in making important decisions. In this study, we tried with the comparison between one of the most useful classic models of economic evaluation, auto-regressive integrated moving average model and one of the most useful artificial intelligence models, adaptive neuro-fuzzy inference system (ANFIS), investigate modeling procedur...

متن کامل

Assessment of Lateral Displacements using Neuro-Fuzzy Group Method of Data Handling Systems

Lateral spreading is one of the most destructive effects of liquefaction. Liquefaction is known as one of the major causes of ground failure related to earthquake. This phenomenon is likely to occur when the rate of earthquake-induced excess pore water pressure buildup exceeds the rate of drainage. Estimation of the hazard of lateral spreading requires characterization of subsurface conditions....

متن کامل

Adaptive neuro-fuzzy inference system (ANFIS) applied for spectrophotometric determination of fluoxetine and sertraline in pharmaceutical formulations and biological fluid

The UV-spectrophotometric method of analysis was proposed for simultaneous determination of fluoxetine (FLX) and sertraline (SRT). Considering the strong spectral overlap between UV-Vis spectra of these compounds, a previous separation should be carried out in order to determine them by conventional spectrophotometric techniques. Here, full-spectrum multivariate calibrations adaptive neuro-fuzz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computer Science (AGH)

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2014